Referencing map features:

Coordinate systems and map projections

Coordinate systems and map projections

- if we want to integrate geographic data from many different sources, we need to use a consistent spatial referencing system for all data sets

Referencing location on the earth's surface

Referencing location on the earth's surface

- latitude φ : angle from the equator to the parallel
- Iongitude λ : angle from Greenwich meridian

Referencing location on the earth's surface

Map Projections

Map Projections

- Curved surface of the earth needs to be "flattened" to be presented on a map
- projection is the method by which the curved surface is converted into a flat representation

Map Projections

- we can literally think of a projection as a light source located inside the globe which projects the features on the earth's surface onto the flat map
- point p on the globe becomes point p' on the map

Azimuthal Projections

Azimuthal Projections

Gnomonic

Stereographic

Orthographic

Azimuthal Projections Aspect

Polar

Equatorial

Oblique

Cylindrical Projections

Cylindrical Projections

Normal

Transverse

Conic Projections

Conic Projections

Distortion in Map Projections

- some distortion is inevitable
- less distortion if maps show only small areas, but large if the entire earth is shown
- projections are classified according to which properties they preserve: area, shape, angles, distance

Equal area projections

- area on the map is proportional to the true area on the earth's surface
- required when area measures are made
- popular in GIS

Equal area projections

Conformal projections

- preserve the shape of small features
- show angles (bearings) correctly
- useful in navigation

Equidistant projections

- represent the distances to other locations from either one or two points correctly
- no map represents all distances correctly!

Equidistant projections

- on large scale maps (e.g., local topo maps for a small region), the error is usually small
- on small scale GIS maps (e.g., entire country) it is better to compute distances using an exact formula

Equidistant projections

Compromise projections

- do not preserve any property, but represent a good compromise between the different objectives
e.g., Robinson's projection for the World

Compromise projections

UTM

cylindrical projection with a central meridian that is specific to a standard UTM zone

- there are 60 zones around the world

UTM

- minimal distortions of area, angles distance and shape at large and medium scales
- very popular for large and medium scale mapping (e.g., topographic maps)

UTM

- coordinates are usually measured in meters from the central meridian (x) and the equator (y)
- 500,000 is added to the easting (x) to avoid negative numbers. For the same reason, $10,000,000$ is added to the northing (y), but only for coordinates in the Southern hemisphere

UTM Zone 18

$78^{\circ} \mathrm{W} \quad 75^{\circ} \mathrm{W} \quad 72^{\circ} \mathrm{W}$

United Nations Headquarters $40^{\circ} 45^{\prime} 01^{\prime \prime} \mathrm{N}$ and $73^{\circ} 58^{\prime} 04^{\prime \prime} \mathrm{W}$ UTM coordinate in meters:

Northing

Easting

Lat/Long can also be represented in planar form (but is not technically a projection)

Parameters required for projecting a map

- latitude of origin
- central longitude (meridian)
- spheroid/datum
- false easting/northing (., an offset to avoid negative numbers)
- map units
- always record all information included on a map sheet!

The concept of scale

- scale is the ratio between distances on a map and the corresponding distances on the earth's surface
- e.g., a scale of 1:50,000 means that 1 cm on the map corresponds to $50,000 \mathrm{~cm}$ or 0.5 km in the real world

The concept of scale

- scale is essentially a ratio or representative fraction
- small scale

1:10,000,000 shows only large features

- large scale

1:25,000
shows great detail for a small area

The concept of scale

- small scale versus large scale often confused
- e.g., large scale models in climatology operate on large areas
- best to say "cartographic scale" or "geographic scale"

The concept of scale

- scale shows not only how features are shown but also what features are shown
- e.g., large scale map of 1:25,000 may show individual houses smaller scale map of 1:500,000 shows only points representing villages
- importance of generalization

